
JOURNAL OF COMPUTATIONAL PHYSICS 2,381-402 (1968) 

Numerical Analysis of Discrete Ordinate Methods 

I. P. GRANT 

Atlas Computer Laboratory, Chilton, Didcot, Berkshire, England 

ABSTRACT 

It is shown that the DSN equations for spherical nonscattering time-dependent 
systems can be put in matrix form, and that one can then apply well-known theorems 
to obtain criteria for stability and monotonicity of the difference operator. The in- 
fluence of the choice of auxiliary equations needed for full definition of the solution is 
analyzed in some detail. 

Numerical illustrations of the theory are discussed. 

1. INTRODUCTION 

Although discrete ordinate methods have been employed for many years to 
solve problems in neutron transport theory and radiative transfer, a definitive 
mathematical analysis of the numerical procedures used remains to be evolved. As 
Lathrop and Carlson [I] have recently remarked, “this lack of mathematical 
guidance is regrettable, for when solution methods are proposed, errors cannot be 
analyzed and one is reduced to comparing results from what may be equally 
imprecise algorithms”. They have attempted in their paper to alleviate their 
difficulties by employing physical arguments. Our object in this present paper, 
which covers similar ground, is to derive some mathematical understanding of the 
difficulties with the aid of well-known matrix theorems. 

We have chosen to analyze the problems involved for spherically symmetric, 
nonscattering, time-dependent systems. Scattering introduces difficulties of another 
order, and we have preferred to consider them separately at this stage [2]. The 
transfer equation for our system may be written 

L[Z] =f$+ p$+ 1 - $ az ___ - = u(r, t)[B(r, t) - r], 
r acL (1.1) 

where the specific intensity Z = Z(r, p, t) satisfies the initial and boundary condi- 
tions 

zG-9 CL, 0 = @P(r, pL); t=O,-l<p<l,O<r<R 

= wp, t); t>O,--1 <p<O,r=R. 
(1.2) 
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Both (T(I, t) and B(r, t) are taken as prescribed functions over the region 
0 < r < R, 0 < t < T. We shall assume that a(r, t) is, at worst, piecewise 
continuous and is suitably differentiable except at discontinuities. We shall assume 
B(r, t) to be continuous and to be suitably differentiable except possibly at points 
of discontinuity of u(r, t). 

In the following section we set up discrete ordinate difference equations in much 
the same way as Lathrop and Carlson [I], and rewrite them in matrix form. 
Properties of the matrix and their bearing on the behavior of numerical solutions 
are set out in Section 3. In Section 4 we briefly examine discretization errors, and 
discuss how these are affected by different choices of the auxiliary equations 
required to fully define the numerical solution. Some numerical solutions of a test 
problem which can be solved analytically are examined in Section 5 in order to 
illustrate the theory. 

2. THE S,, DIFFERENCE OPERATOR 

2.1. Notation 

We begin by partitioning the range 0 d t < T, 0 < r < R, - 1 ,( p < 1 
into cells D = (s + 4, i + +, m + +) centred on the point (ts+1,2 , ri+l/, , c~~+r,~). 
We suppose that the partitioning is such that 

O<t,<t 3+1/z < fs+1 < T; s = 0, l,...,S, 

ri < ri+112 < r,+l; i = 1, 2 ,..., N; 0 < rl , rN+1 = R, 

pm < pLn+li2 < f.~~+~; m = -M, -A4 + l,..., M - 1; k = f I. 

We shall write for each cell 

vi+112 = s (i+1/2) 
dV = ITi” hr2 dr, 

Ti 

W m+1/2 = I dp = j Pm+ldp,-MQn GM- 1, 
b?z+1/2) hn 

A s+1/2 = i 
dt = 

(s+1/2) I “+I dt, 
t, 

together with 

An= -j% P dp = ; (1 - &A m = -M, -M + I,..,, M, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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and 
%,i+1/2 = vi+1 - 4) Pm 3 i = l,..., N; m = --IV,..., M, (2.5) 

where Ai = 4rrri2. We shall regard the interval lengths W,,,,, and division 
points pm+112 as the weights and abscissas of some quadrature formula over 
[ - 1, l] (or [ - 1, 0] and [O,l] separately). The precise nature of this rule is unimpor- 
tant for our work. For a discussion of various possibilities we may refer, for 
example, to Carlson [3]. All that we shall do is to impose conditions 

M-l M-l M-l 

2 Wm+,/, = 2, _c, Wm+~/+m+m = 0, ; Wm+,,,&+m = i. (2.6) 
-M 

We shall frequently assume that the partition of the TV range is symmetric, namely 
p-,-1/2 = -thil12 , m = O,..., M - 1, and we shall then impose further condi- 
tions, namely, 

f Wm+lt2 = 1; z Wk+1~2pk+1~2 = --Pm, m = -M + I,..., M (2.7) 
-M 

with /3~ = 0. In particular, /$, = - 4. Notice that we do not need to consider 
the points pm for integer m explicitly. 

Following convention, we suppress suffixes whose values are easily determined 
from the context in order to keep the equations reasonably tidy. We shall make 
use of integrals over segments of the boundary of the cell Sz as follows: 

and 
I* = J &t - tJ &-, P, 0 dV 4 dtlV~+1,2Wm+1,2 R 

(2.8) 
I s+1 = 

s 
W - t,+d I@, pL, t) dV dp 4 Vi+1~2Wm+112 . 

s-2 

These define mean specific intensities crossing the surfaces t = t, , t = t,+l , 
respectively. The notation 6(x) is used for Dirac’s delta function. Similarly, we 
need 

Ii = s &r - rJ d(r, P, t> dV dp dtlW,+1,~~,+1,2As+l,% , (2.9) R 

z, = s %P - 1.4 i Z(r, LL, t> dV 4 dt(j(-4t+1 - 4 A,+l,2 , Q :’ (2.10) 

together with the corresponding quantities Ii+, , Z,,,+l . We also need the cell 
average 

f= 
s Z(r, CL, t) dV dp dtlV~+1~2Wm+llBAs+112 . (2.11) 

R 
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2.2. The DifSerence Operator 

Starting with (1.1) we write L[Z] in divergence form 

We introduce the operator A, by defining 

LM = j- R -WI dV& dt/Vi+1/2Wm+l/2As+l/2 . 

In terms of our definitions (2.1)-(2.11) we find 

&[Z] = Z;; - za- + Pm+1/2 
Ai+,Zi+, - 44 + z %+1 m+1 - 

s+112 
V, 

%nzvn, 

2+1/2 vi+1/2Kn+1/2 
(2.14) 

and with this notation, we may also write down the difference equivalent of (l.l), 
namely, 

As-#] = s R e, t)P(r, t> - Z(r, ru, 01 dVdrJ, dt/Vi+1/2Wm+l,2As+l/2 

= Qd& - 4, (2.15) 

say, where usa and Bn are average values in a. 
In deriving (2.15) we have made no approximation which implies any particular 

form for the dependence of Z(r, ZL, t) on the independent variables. All that we have 
done is to replace a volume integration over 52 by an integration over its surface 
using Green’s theorem. However, if we wish to calculate the intensity field cell by 
cell, we know not more than three of the six surface intensities, and Eq. (2.15) 
then gives only one relation for determining the remaining unknowns. We have 
to supply auxiliary equations in which we have assumed a specific functional form 
for Z(r, TV, t) on its arguments. The equations that we shall employ are 

X .9+1/2zs+l + [l - X8,1/21 18 = ys+1/2t 

X m+1/2L+l + [l - -L+1/21 L = Ym+1,2& 
and either 

xi+,/24 + P - x*+,/21 &,I = Yi,l,,l 
(2.16) 

when CL,,,+~I~ < 0, or 
X i+1/2&+1 + [l - Xi+1/21& = Yi+1,2l 

whenp,+1/2 > 0. It would be possible to set up relations of greater generality, but 
we consider that these are sufhcient for our purposes. For each X and Y we shall 
assume + < X d 1, and I 1 - Y 1 < y < 1, but we shall for the present impose 
‘no other restrictions. 
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2.3. Matrix Form of the Deference Equations 

We have first of all to order the cells Q. For this purpose, we need only consider 
a single time interval [ts , ts+J, so that it is unnecessary to be explicit about the 
value of s in ordering. We shall see that we need an additional set of cells of zero 
weight in order to set up the boundary condition along the direction p = -1. 
For these cells we set nz = --M - 1. We now order the symbols 52 = (i + +, m + -i) 
as follows: 

(N + +, --M - $), (N - 4, -M - 4) ,..., (;, -M - $), p-L-M-l/z = p-,+, = -1, 

(N + +, -A4 + a), (N - +, -M + 9) ,..., (#, ---A4 + 4) 
. . . . . . 

1 
t-%+1/2 < 0, 

0’ + $3 -Q), (N - 4, -4) ,..a, (8, -&) 
(2.17) 

G, +I, Gi !J,..., (N + a, 8 
. . . . . . 

1 
Pm-w2 > 0. 

(8, A4 - t), ($, M - $) ,a.., (N + 4, M - 4) 

We associate an index k with each cell, where 1 < k < (2M + 1) N = K, and 
define an “output” intensity vector, 

(2.18) 

The superscript T will be used to denote transposition. A subscript (S + l/2) can 
be appended to u(k) in order to indicate the time interval involved. 

With this notation, Eq. (2.15) and (2.16) can be combined in the form 

A,(k) u(k)s+, 12 = A,(k) u(k),-,,, + A,(k) u(k - l),,,,, 
+ A,(k) u(k - Os+m + q(k),+,,, 

where the A,(k) are square 4 x 4 matrices, [q(k)p = [0, 0, 0, B(k)], and 
1 = N if m # 0, I = 2i - 1 if m = 0. The Ai are defined as follows: 

m:l_l $$-j, A,(k)= [i' ,:I"'2' i I j, 

(2.20) 

A,(k) = 
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The X and Y coefficients have been defined above in Eq. (2.16), 

44 = WJW d,+1,*; 

b+(k) = I PL,+1/2 I uJ@) VGli2 9 b-(k) = I PW1’2 I 4+,/o(~) Vi+1,2 

when m -c 0, or (2.21) 
b+(k) = I Pm+112 I Ai+.~lU(k) vi?112 . b-(k) = i th+1/2 I Ad+) vi+112 

when m 3 0; and 

C+.Ck) = a7n+llu(k) Vi+l/2WmTl/2 9 c-(k) = %/o(k) Vi+112 wm+112 9 

in the general case. We note the relation b,.(k) + c+(k) = b-(k) + c-(k). 
The restrictions on the X and Y coefficients ensure that A&c) is invertible, so 

that (2.19) can be written in the form 

-C,(k) u(k - os+1/2 - c2w u(k - 1)s Cl12 +- ws+1,2 = Cl(k) ws-l/2 + W#,l,2 9 

(2.22) 
where, for k = I,2 ,..., K, 

C,(k) = 4(k) 

L 

G+,/,(k) - Da+&) * - * 
G+,,,(k) - . - 
C m+,,,(k) 

1 . . . 1 * - * ' 

i: 
c a+&) * * * Ci+ldk) - Di+l,Ak) * * C,(k) = B,(k) . C m+dd 1 . - ’ 1 . . 

with 

C,(k) = B,(k) i 
. . G+&) * : : Cm+l,2($;~$~+l,2(k) : 9 . . 1 I 

B,(k) = a(k) 4k)/Xs+.l,2 > @z(k) = b(k) 4k)lXi+l/2 3 b(k) = t(k) 4k)lxm+l/2 3 

C s+l,a(k) = Yn+ldX.v+1,2 9 G+,,,(k) = Yi+ldXi.+l/e 2 Cm+,/,(k) = L+ldKn+1/2 3 

D s+l/e(k) = (1 - Xa+l/2)/4k) d(k), Di+l,dk) = (1 - xi+ld/Nk) 4k), 

D m+,,,(k) = (1 - %n+,/,Mk) 4Wv 

&k) = b+(W - &+1/J + b-(k) xi+,/, , 

C(k) = c+(k)(l - Xn-+1,2) + C-W Xn+,/2 a 
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44 = (1 + 44 G+&) + b+(k) G+,/,(k) + c+(k) G+dW-l. 

It is convenient to incorporate flux incident on the boundaries into the source 
vector S(k), and to write 

CWl= = 44 NWs+l/aW, G+&), G+dk)~ 11 + L%Wl=. 

The vector S,(k) vanishes unless k = 1 mod N, and then we find 

EMT = W)[G+&), G+&) - &+dk), G+&), 114% k = 1 mod N 

(2.24) 
where 

u&V = Z~+l,m+l/a 3 m(O 

= 1,m+1/2 P Z m 3 0. 

The value of Z1,nz+1,2 depends on what we suppose happens in the region 0 < r < r,. 
For example if r, = 0, a suitable condition is 

Zl.m+1~2 = Zl,--m-l/2 , m = 0, I,..., M- 1. 

When k < N(m = -A4 - l), the first term in (2.22) disappears. This can be 
easily established by applying a limiting process in which pm -+ pm-l = - 1 to the 
basic equations (2.15) and (2.16). In addition to the relation C,(k) = 0, we find 
that 

C ,+&k) = 1, c+(k) = --b+(k) + b-(k), m = -A4 - 1, 1 f k < N. 

(2.25) 

This completes the specification of the difference equations to be solved. 
The structure of our difference system becomes slightly more transparent if we 

partition the discrete space on which our solutions are defined into subspaces 
labeled by an index j = I,..., 2M + 1. We associate the vector ~9 with the jth 
subspace, where 

[u’]= = [u(Nj - N + l)= ,..., u(N,)=]. (2.26) 

Equations (2.22) may now be written in the form 

%+1/a = Fus--1/a + Sewa 3 (2.27) 

where we partition uS+1/2 into vectors u:+~,~ ,j = l,..., 2M + 1 as defined in (2.26). 

5W2/4-4 
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The matrices E and Fare respectively lower triangular and diagonal, and may be 
partitioned in a manner corresponding to the partition of u so that 

F,,$ = diag[C,(Nj - N + 1) ,..., C&V,)], (2.28) 

I 
-C,(N, - N + 2) I 

E,,j = -C2(Nj - N+ 3) (2.29) 

Ej.j-1 = diag[-C&Vi - N + 1) ,..., -C,(Ni)],j # M + 2 

= [Ej.j-l(k, j)],j = M + 2, 
(2.30) 

where 

E M+$,~+l(k, I> = -C,(N, - N + k) a&, iv - I + 1) (2.31) 

is the matrix entry in the kth row and lth column. All other blocks of E and Fare 
null. The special form of EM+-P,M+l arises from the reverse ordering of radial points 
when p changes sign. 

The form of these equations deserves comment. Because E is lower triangular 
with nonnull diagonal elements, the solution of (2.27) is a trivial matter. All that is 
necessary is to solve the equations recursively in order of increasing j; for this 
reason, the procedure is known as the “Method of Directional Evaluation” [3]. 
The cell ordering (2.17) was chosen in order to simplify this progression. In 
practice it is only necessary to write Eq. (2.22) in the form 

&‘d,+m = C,(k) 4%,/z + C,(k) u(k - 1),,1/, 

+ Cd4 @ - Os+,,, + SW,+,/, 
(2.32) 

to see that this can be done. However, the structure of Eqs. (2.27) is more con- 
venient for studying properties of the difference operator, and we shall make use 
of this form in the next section. 

One final remark: the method of directional- evaluation can also be used for 
scattering problems, in which case iterative techniques are needed [3],~ Essentially 
one adds an estimated scattering source to Ss+1,2 and solves the equations as 
before. The new solution can now be used to improve S,+l,, , and the iteration is 
repeated until convergence is obtained. We shall not discuss this method further 
in the present paper. 
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3. MONOTONICIIY AND STABILITY 

In this section we study the properties of the solution of equations (2.22) or 
(2.27). Such a solution should be an approximation to a genuine solution of the 
original problem. We must therefore discuss the convergence of (2.27) and the 
consistency and stability of our initial-boundary-value probIem. In addition, a 
genuine solution must, from physical arguments, be nonnegative, and so we shall 
need to consider the conditions under which we can be assured that every element 
of the discrete solution u,+~/~ is non-negative. We shall write u >, 0 to denote that 
all elements of the vector u are nonnegative. Similarly, we shall write A > 0 to 
show that all elements aij of the matrix A are nonnegative. Thus it is easy to see 
from the definitions of (2.20) and (2.22) that, for all k, &(k) > 0, i = 1, 2, 3; 
G+&) > 0, G+,,,(k) > 0, GwzW > 0; Ds+mW Z 0, Di+,/,(k) 2 0, 
D m+1,2(k) 3 0. Hence, for all values of k, S(k) 3 0. 

For precision, we shall state our results as theorems. 

THEOREM 1. Let E be the matrix of (2.27) and let v be a nonnegative vector. 
Then the equation Eu = v possesses a unique solution which will be nonnegative if, 
for all cells, G+&) 2 &+&), Cm+&) 3 Dm+&), k = 1, L., K. 

Proof. The simplest procedure is to exhibit the solution of Eu = v. We must, 
in the notation of (2.22) and (2.32), to construct u, beginning with u(1) = v(l), and 
then 

u(k) = C,(k) u(k - 1) + C,(k) u(k - I) + v(k) (3.1) 

for k = 2, 3,..., K. Existence and uniqueness of solution follow immediately. 
For nonnegativity we see that the conditions Ci+,,,(k) > Dt+&k), 
C m+dk) Z Qn+1/2 (k) imply that C,(k) > 0, C,(k) 3 0 for all k. Since, by 
hypothesis, v 3 0, we see that u > 0 since it is constructed from a sum of non- 
negative terms. 

COROLLARY. A suflcient condition for E-l > 0 is that Ci+,,,(k) > DifllO(k), 
C m+l,z(k) >, D,+,,,(k) for all cells, k = 1, 2 ,..., K. 

This corollary is merely a restatement of the conclusions of Theorem 1. Notice 
that the condition is only sufficient to ensure E-l 3 0. Necessary conditions are 
much harder to find. 

From (2.27) and Theorem 1 we see that u,+~/~ is defined uniquely by 

U 9+1/2 = E-W+.,,, + &+1/2) = E-%+1/2 (3.2) 

and -that if the conditions of Theorem 1 are satisfied, u,+~/~ 3 0 if 
V s+1/2 = %-l/2 4 S 9+1,2 > 0. We have already seen that Ss+l,z >, 0, so that if 
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u,-rip 3 0 it is sufficient that F > O,.although once again this is not a necessary 
condition. This leads us to formulate the following. 

THEOREM 2. Equations (2.27) hare a unique solution u,..~,~ . A suficient con- 
dition for this to be nonnegatice is that Ci+l,z(k) $ Did I:2(k), C,,,+,,,(k) > D,+&k), 
C,+,,,(k) 3 Dn+&k) for all cells, k = 1, 2 ,..., K. 

Next we must examine convergence to the solution of the continuous problem. 
We shall show in Section 4 that our difference operator is consistent in the follo- 
wing sense, namely that if M and p = dr/(cd) be kept fixed, there exists a positive 
constant K such that as cd --f 0, 

I4-W - L,PIl < K(4 
where L&J] is the discrete ordinate differential expression 

(3.3) 

n 

LM[I] = [k k + /h+l;f $1 lCri+1/2 3 t-&+1/2 9 ta+112) 

2 
+- 

Pm+.14ri+lf2 1 Pm+1 , t8+1/2 

ri+112 1 
w) - Bm1(ri+112 9 Pm 9 ts+l/2) 

m-+112 

+ tLm+l~J(ri+l12CLm+ll*ts+l12 )I (3.4) 

If the angular mesh is now refined suitably, we can choose a constant K’, such that 
asM-+co 

I L&l - W < K’IM (3.5) 

Now let G = E-‘F. For a fixed step-length cd, and fixed p, it is clear that 
(1 us+r12 I( remains bounded as S -+ co, (A) . S = T being kept fixed, if and only 
if I] G” )I is uniformly bounded for all n > 0, with respect to some suitable choice 
of vector and matrix norms, that is to say if the approximation is stable. Since G is 
lower triangular, we may use the following result [4]. 

THEOREM 3. Let G = G(cd,p) haveeigenvalues yk , k = 1, 2,..., K. A necessary 
and suficient condition for G to be stable is that 1 yk 1 < y < 1 for all k # k, and 
1 yk, ( < 1 -I- O(cA) for some single value of k, . 

Thus we have only to examine the eigenvalues of G, which are easily written 
down by inspection. Some eigenvalues are zero, and the remainder are given by 

yk = [4(4(Cs+,/2(k) - Da+&))l, k = 1, 2,..., K. (3.6) 

We are now in a position to apply our results to the sets of auxiliary equations in 
common use. The nomenclature for auxiliary equations is due to Carlson [3]. 
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THEOREM 4. The Diamond DlJerence scheme defined by choosing auxiliary 
equations (2.16) with coeficients 

Y s+1/2 = Yi,l/Z = Yrn,l/, = 1, ~S,l/z. = &+1/2 = Kn+,/, = t (3.7) 

is unconditionally stable. Nonnegativity of the solution cannot be guaranteed for 
finite mesh sizes. 

Proof. From the definitions (2.22), we have 

44 = 4W/Mk) + 21 (3.8) 
where 

Then 
[I(k)]-’ = a(k) + b+(k) + c+(k) = a(k) + b-(k) + c-(k) > 0 

yk = 4a(k) d(k) - 1 = $$):y - 1. 

Since 0 < a(k) Z(k) < 1 and l(k) > 0, we see that - 1 < yk < 1, so that we have 
unconditional stability. 

To prove that the conditions of Theorems 1 and 2 must be violated, it is sufficient 
to establish a contradiction. Suppose that the conditions all hold. Written out, we 
see that they imply 

Hence 
a(k) > 1/4d(k), 6(k) 3 1/4d(k), Z(k) 3 l/M(k). 

&)= a(k) + b(k) + E(k) 3 -?-- = W(k) + 2) 
4 43 W) 

by (3.8), which implies Z(k) < -2/3. Since l(k) is positive, at least one of the 
inequalities of Theorem 2 must be violated, and nonnegativity cannot be guaran- 
teed. 

We shall see later that this imposes a practical restriction on the,step lengths. 

THEOREM 5. The Step Difference scheme defined by choosing Auxiliary equations 
(2.16) with coeficients 

Y s+1/2 = yi+1,2 = L,,,, = -K,l/, = &+1/z = L,,,, = 1 

is unconditionally stable, and its solutions can be guaranteed nonnegatiue. 

Proof From the definitions (2.22), we have 

d(k) = l(k)@(k) + I] 

W) 
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with Z(k) defined as above, so that 

44 w I 
YK = 44 44 = l(k) + 1 < @) + 1 < 1 

demonstrating stability. Nonnegativity is an immediate consequence of the 
observations that D,+r&) = D,+,,,(k) = D,+,,,(k) = 0. 

4. DISCRETIZATION ERROR AND CONSISTENCY 

We have already seen that the difference operator An[Z] defined in (2.13) and 
(2.14) gives an exact relation representing the net radiation balance for a cell and 
it is straightforward to verify that the difference equations so defined are conser- 
vative in a global sense. However, we h.ave been forced to introduce auxiliary 
equations to make the problem soluble, and these embody somewhat arbitrary 
approximations to describe the functional form of Z(r, I”, t) within each cell. We 
have now to examine the discretization error arising from these approximations. 

We first examine what happens if we take the cell dimensions Ar i ri+l - ri , 
A = ts+l - t, sufficiently small; keeping a fixed angular mesh. Suppose we 
associate the quantities 1, Zi ,.. ., with specific points inside and on the boundary of 
a cell so that 

1 = Zh+1/29 ~~+~/2 9 fs+1~2), 

(4.1) 
Ii = I(ri , fh+lt2 , ts+1/2), 

Suppose that 

ts+1/2 = SLl + ts> 

and 

rd+1f2 = 4+l,2ri.+l + (1 - 8i+I12) ri , k%n+1/2 < 0 (4.2) 

= (1 - &+112) ri+l + &+1,2rip Pm+ll2 2 0 

If we expand Ii ,..., about the point (riblIz , pm+II2 , t,+l12) using Taylor’s theorem, 
and insert in (2.14), we find 

+ 4+1 - Ai /%n+rL+l - t%L 
vi+112 I W + pn+l12i 

I 
+ W42, @>21, (4.3) 

m+1/2 
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where 

Ai+m = b+di+l + (1 - &we) 4 9 th+rla < 0 

= (1 - &+m) Ai+l + ~i+m4 3 Pm+1/2 > 0. 

In general, 

Ai+fl%Cri+l - rJ 
vi+1 12 

= 1 + O(h), 

but the special choice 

Oi+l,2 = f + i (sgn pm+& ri+l - ri 
rifl + ri 

ensures that 

Ai+l,20+t+l - rd = 1 
vi+1/2 

exactly. Also, 
A f+l - Ai 

vi+llz 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

in general, with exact equality 

Ai+l - Ai 2 zzz- 
vi+1/2 ri+lt2 

when we make the special choice (4.6) again. Thus, provided i has bounded first 
derivatives, we obtain inequality (3.3) in a straightforward manner. Inequality (3.5) 
follows by a similar argument in which we can make a choice 

e m+1/2 = wm+1/2 - /%+11/KL+1/2Pm+1,2 (4.8) 

to reduce the order of the truncation error to O( W2) if desired. 
In practice we want to use finite-size cells, and it is desirable to understand what 

happens in this circumstance. It is helpful now to examine the analytic solution of 
(1.1) by the method of characteristics. This requires us to solve 

dI/ds = o[B - I] 

along the ray-path defined by the equations 

(4.9) 

c dt dr 
x=1, z=p, 

dcL _ 1 - p2 
ds-r’ 

(4.10) 
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Let T(S) be the optical path length, defined by 

T(S) = ,: a(d) ds’, 

where for brevity we have written a(~‘) for u(r(s’), t(s’)) which is a prescribed 
function of its arguments. Then (4.9) has the solution 

Z(s) = Z(0) e-7 + 1: B(Y) e+-+‘) dr’, (4.11) 

where 7 = T(S), T’ = T(d). 

For brevity, write Z, = Z(w), 0 < a! < 1, I = Ze for some fixed 0,O < 0 -=c 1. 
We also write in the same notation 

B, = Z?[l + ,&s(~11 - 0) + O(P)], 0 < 01 d 1, 

where maxi /3.~(ol - 0)] < 1, and similarly for u(s). Substituting in (4.1 l), we have 

7 = C% + o(s’) 
and 

where 
Z, = Zoe-“* + B(1 - e-UT) #((01, e), (4.12) 

Now we find a relation between I,, Ze = i, and Z1 by putting CY. = 8, 1 in turn in 
(4.12) and eliminating B. We find 

Xl,+(l-X)z,= I?, (4.13) 
where 

x _ *et @ y 1 - e4r 
#(l, e) 1 - e-7 ’ 

Y= *cl, 0) 
e+i)( 1, e) + (1 - e+) +(e, e) ’ 

In the particular case in which j3 + 0, we see that #(oL, 0) --t 1, and 

x = 1 - e+ 
l-e- ’ Y=l (B = 0). 

Suppose we now apply (4.13) to a segment of a ray traversing a cell, and for 
simplicity put B = 0. Then from (4.14), for small T 

x(T) = 8 + )e(i - e) 7 + o(T8), 7 < i 
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so that 

64 + (1 - e) I, + O(T) = I, 7 << 1. (4.15) 

At the other extreme, T > 1, 

X(T) = 1 - e-+ + O(e-v) 

and so 

z1 + O(e-&) = I, 7 > 1. (4.16) 

More generally, if we retain terms of order /% (small) we find from (4.12) 

z, = B(1 - P/C) + O(s) 

(4.17) 

which we should expect to find as the limit for diffusion theory. 
These results are suggestive for our choice of auxiliary equations (2.16). The 

standard choices, the Diamond and Step models were discussed in the last section 
and their properties are set out in Theorems 4 and 5. However, it is clear from our 
discussion above, that the choices Xi+1,2 = tIi+rlz, etc., Yi+I,z = 1 with fIi+r12 
defined by (4.6), will give a smaller truncation error in spherical geometry, parti- 
cularly near the center of the sphere. But when the cell is optically thick, we can not 
expect this choice to give a satisfactory answer. For, if in the proof of Theorem 4 
we consider what happens for large o(k), we see that 

and 

d(k) - 1 + O[o(k)-l] 

4 
Yk - -l + ca(k)d 

so that the solution can be expected to oscillate in sign. This will remain true when 
X > 4 except if we choose the Step model weights. However, if we make this 
choice, we increase the truncation error. 

As a compromise, we may try using auxiliary equations of the type of (4.13) 
with weights given by (4.14) for a suitable choice of T. The lines joining opposite 
faces of a cell are not, in general, characteristics. Nevertheless, such equations 
will interpolate between the two limits appropriate to small and large optical 
thickness, and it may be possible to do this in such a way that the solution will 
remain smooth and improve on the step model. We examine this possibility in a 
heuristic manner in connection with the problem of the next section, 
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5. A TIME-DEPENDENT TEST PROBLEM 

TO illustrate our work we have chosen a simple problem whose solution can be 
written down immediately in closed form. This problem is the calculation of the 
radiation field in a uniform sphere of radius R with a source function B(t) which 
is independent of r. For the choice 

B(f) = 4l , t<O 
= Bl , t > 0, (5.1) 

the solution may be written 

Z(r, y, t) = B,,(l - e-OS) t,cO 
= B,(l - e-(lct) + Bo(e-OCt - e-OS) 0 < t < s/c (5.2) 
= B,(l - e-OS) t > SIC, 

where 
s = rp + [R2 - r2(1 - ~2)]11z. (5.3) 

This provides a stringent test of the numerical method when B,, > BI , and we 
have chosen the values B,, = 100, B, = 1. Length and time units are chosen so 
that u = c = 1. 

We have computed numerical solutions with a variety of choices of mesh with 
R = 4. The choice of angular mesh is not critical for the determination of the 
mean intensity J(r, t) and net flux F(r, t), and most of our calculations were made 
with the DP, Gaussian Set (see [3], Table III). Greater interest is attached to the 
variation in the r and t meshes and the effect of different choices of auxiliary 
equation. 

Our results bear out in general terms the theory of the preceeding sections. In a 
series of runs with fixed r-mesh 

r = 0, 1, 2, 3, 3.5, 3.75, 3.875, 3.9375, 4.0 

chosen with small increments near the outer boundary so as to give good definition 
in that part of the region in which the solution changes most rapidly, we took 
successively a time step A = 5, 2.5, 1.25, .625, .3125. Negative intensities appear 
in the solution at least once for all cases with the Diamond auxiliary equations. 
Use of the interpolating auxiliary equations (4.13) and (4.14) with T = CA, 0 = 4, 
for the t-direction, and 7 = Ar, with 0 given by (4.6) damped out the occurrence 
of negative intensities, but did not remove them completely. Of course, negative 
intensities cannot occur with the step auxiliary equations. 

The emergent net flux, defined by 

W t> = 271c Wm+lt2t4n+~12zN+l,m~l~2 
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is a convenient quantity to show the oscillation in time of the numerical solutions. 
The results for the Diamond scheme are displayed in Fig. 1, together with the 

\ / 
\ , 
\ I 
, I 

FIG. 1. Net emergent flux from a sphere as a function of time. Solutions of the diamond 
scheme are plotted for time steps A = 5, 1.25, and ,312s. 
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analytic solution, Dashed lines have been used to connect computed values 
plotted at the mid-points of time steps. Figure 2 shows the corresponding histo- 
gram for the Step scheme. Here, we have plotted the numerical solution as a step 
function. The slower convergence of this scheme as A decreases, arising from the 
increased truncation error compared with the Diamond scheme, is obvious. 

0’ I 1 L 
0 5 IO IS 20 

TIME 

Frc. 2. Net emergent flux from a sphere as a function of time. Solutions of the step scheme 
are plotted for time steps d = 5, 1.25, .3125. 

Figure 3 shows that the interpolating auxiliary equations represent some compro- 
mise between the Step and Diamond schemes, and provide a damping of the 
oscillations without too much increase in the truncation error. 

The distribution of net flux at cell boundaries in the interior of the system 
discloses other features of the problem. Figure .4 shows what happens to the 
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FIG. 3. Net emergent flux from a sphere as a function of time. Solutions of the interpolating 
scheme are shown for A = 1.25, 5. The solution for A = .3125 is virtually indistinguishable 
from the analytic solution. 

solution of the Diamond scheme for a time step d = 2.5. After one step there is 
qualitative agreement with the analytic solution at t = 1.25. On the next time step 
(2.5 to 5.0) we see an unphysical oscillation appearing, with a negative flux in the 
outside meshes following the behavior shown in Fig. 1. The corresponding pro- 
files for the step and interpolating schemes appear in Fig. 5. These are qualitatively 
more reasonable, but because of the coarseness of zoning both radial and timewise, 
the accuracy is not very high. The fact that the solution is as good as it is in these 
circumstances is not unsatisfying. We have performed some other calculations, but 
they add little more to our understanding of the problem, and we shall not discuss 
them here. 



400 GRANT 

6. DISCUSSION 

We have shown that all the schemes discussed converge, in the limit of small 
mesh sizes, to the original differential equations. For finite mesh sizes, the usual 
choices of auxiliary equations lead to stable difference schemes, but the operators 
involved can not always be guaranteed monotone. When the solution is dominated 
by an imposed source this may be of no consequence, but trouble can arise parti- 
cularly for decaying radiation fields as in the example studied in the last section. 
These troubles can be traced to cell dimensions which are too large in space, in 
time, or in both. The step equations are alone in providing a monotone difference 
operator, but have a larger truncation error than other schemes. The interpolating 

2oO/lSO 

ISOllOt 

roe/s c 

2 -I IL 

L t 

so/o 
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TIMESTEP FROM 
#4 0 to 2.5 

7 
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I- I.25 

___ DIAMOND SCHEME 

_ _ --___ ANALYTIC SOLUTION 

A’ 2-S 

: 

FIG. 4. Distribution of net flux with radius for the diamond scheme with time-step A = 6.5 
averaged over steps. 
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STEP SCHEME 

-_-- INTERPOLATING SCHEME 

A ‘2.5 
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r” 
0 to 2.5 
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-0 I 2 3 4 
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FIG. 5. Distribution of net flux with radius for the step and interpolating schemes with time 
step d = 2.5 averaged over a step. 

scheme has a smaller truncation error, but approaches the step scheme in its 
ability to keep the solution nonnegative. 

Experience suggests that this is at best a somewhat unsatisfactory way of dealing 
with these problems. The reason is that the adopted equations are not based on a 
coherent underlying theory. Subsequent work [2], so far only relating to the case 
of a time-independent emitting, scattering, and absorbing slab, has suggested 
that invariance arguments hold the key to a more satisfying solution of the difficult- 
ies we have discussed. This is because the S, difference equations are conservative, 
and so can be rewritten in a form consistent with well-known principles of in- 
variance [5], that is to say, with conservation in a global sense. The matrix coeffic- 
ients can then be interpreted as approximate operators for reflection and trans- 
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mission by finite cells. Since we have a calculus for rapidly computing reflection 
and transmission operators for multiple layers [6, 71, we can construct better 
approximations for the operators for finite cells from the S, expressions for 
thinner cells. Explicit methods of solving the transformed equations without 
having recourse to iteration in scattering problems have been found to work 
well in practice [2]. 
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